
V5R3 CL Enhancements

Larry Bolhuis
Arbor Solutions, Inc.
lbolhuis@arbsol.com

CL Command Enhancements

There have been new and changed IBM
CL commands in EVERY release
For V5R3:
– 57 new CL commands
– 247 changed CL commands

A small number of CL commands
compromise the CL HLL

Support for Integer Variables

New TYPE values on DCL statement
Values
– *INT – Integer
– *UINT Unsigned Integer

chosen for consistency with PARM TYPE values

LEN(2) and LEN(4) supported
OPM does not fully support 8-byte integers
– Use CLLE

Support for Integer Variables

Much "cleaner" than using %BIN
– Use the value natively

Useful for
– passing parameters to OS/400 APIs
– passing parameters to other HLL programs

Command PARM statement will allows
RTNVAL(*YES) for integer parameters

Control Flow Enhancements

Additional ‘standard’control flow commands:
DOWHILE, DOUNTIL, DOFOR
Each support
– LEAVE
– ITERATE

CASE
SELECT, WHEN, OETHERWISE, ENDSELECT
25 level nesting

Common DOxxx Support

Loop starts with the DOxxx statement
– The DOxxx statement supports a label (note this)

ENDDO marks end of loop
– All types of DO loop use ENDDO

ITERATE – Discontinue processing remainder of
code before ENDDO and transfer to label on
DOxxx
– Can be the label on the current DOxxx or loops

external to this loop
– If no label given the current DOxxx loop is assumed

Common DOxxx Support

LEAVE – Discontinue processing remainder of
loop and jump to statement following the
matching ENDDO
– Can be the label on the DOxxx or the DOxxx loops

external to this loop
– If no label given the current DOxxx loop is assumed

Can be nested (up to 25 levels)
– i.e. you could have a DOWHILE loop within a

DOFOR loop
– or a DOWHILE inside a DOWHILE etc.

DOWHILE Loop

Same COND support as IF statement in CL
Evaluates COND at "top" of loop
A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('1')
:
DOWHILE COND(&LGL)
: (group of CL commands)
ENDDO

DOUNTIL Loop

Same COND support as IF statement in CL
Evaluates COND at "bottom" of loop
A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('0')
:
DOUNTIL COND(&LGL)
: (group of CL commands)
ENDDO

DOFOR Loop
Syntax:

DOFOR VAR() FROM() TO() BY()
BY defaults to '1', other parameters are required
VAR must be *INT or *UINT variable
FROM and TO can be integer constants,
expressions, or variables
BY must be an integer constant (can be
negative)
FROM/TO expressions are evaluated at loop
initiation; TO evaluated after increment
Checks for loop exit at "top" of loop

LEAVE and ITERATE

Allowed only within a DOWHILE,
DOUNTIL or DOFOR group
Both support LABEL to allow jump out of
multiple (nested) loops
Both default to *CURRENT loop
LEAVE passes control to next CL
statement following loop ENDDO
ITERATE passes control to end of loop
and tests loop exit condition

SELECT Group

SELECT starts a group; this command has
no parameters
ENDSELECT ends group; this command
has no parameters
Group must have at least one WHEN
May also have an OTHERWISE

SELECT Group

WHEN
– Has COND and THEN support (like IF)
– To execute multiple statements must use

DO/ENDDO
OTHERWISE
– Run if no WHEN statement COND = True
– Single parm of CMD (like ELSE)
– Again needs DO/ENDDO for multiple

statements

SELECT Example
SELECT

WHEN COND((&COUNT *EQ 4) *AND (&COUNT2 *EQ 2)) THEN(DO)
..some important stuff...

ENDDO

WHEN COND(&COUNT *EQ 6) THEN(DO)
..some different important stuff..

ENDDO

OTHERWISE CMD(DO)
..default important stuff..

ENDDO
ENDSELECT

Multiple File Support

Supports up to 5 file "instances"
Instances can be for the same file or
different files
New OPNID (Open identifier) parameter
added to DCLF statement
Default for OPNID is *NONE
– Only one DCLF allowed with OPNID(*NONE)

OPNID accepts 10-character name
(*SNAME)

Multiple File Support (continued)

If OPNID name specified, declared CL variables
are prefixed by this name and an underscore
(e.g. &OPENIDENT5_FLDA)
OPNID also added to existing file input/output
CL statements
– RCVF
– ENDRCV
– SNDF
– SNDRCVF
– WAIT

Increased size for *CHAR var

Previous limit was 9999 bytes for CL variables
declared as TYPE(*CHAR)
New limit is 32767 bytes for TYPE(*CHAR)
DCLF will (still) not generate CL variables for
character fields longer than 9999 bytes in a
record format; same compile-time error
Limit for TYPE(*CHAR) and TYPE(*PNAME) on
PARM, ELEM, and QUAL command definition
statements stays at 5000 bytes

Incr. max number parameters

Previous limit was 40 for PGM and
TFRCTL, and 99 for CALL command
New limit is 255 parameters for PGM,
CALL, and TFRCTL
Limit for CALLPRC (only allowed in ILE CL
procedures) will stay at 300
Number of PARM statements in a CL
command will stay at 99

Parameter passing "by value"

CALLPRC (Call Procedure) command supports
calls from ILE CL procedures to other ILE
procedures
In prior releases, CALLPRC only supported
passing parameters "by reference"
Can specify *BYREF or *BYVAL special value
for each parameter being passed
Enables ILE CL to call many MI and C functions
and other OS/400 procedure APIs
Maximum numbers of parameters still 300

Follow-on CL Compiler
Improvements

V5R3 is the biggest release for CL compiler
enhancements since ILE CL compiler in V3R1
Most new CL compiler function since System/38
But They’re not done yet!
Rochester is currently working on the next set of
enhancements
They are looking for early feedback & missed
function
Cards and letters to Guy Vig gwvig@us.ibm.com

Subroutines

Simple code block between SUBR and
ENDSUBR statements
Invoked by new GOSUBR statement
– No argument/parameter passing
– No local scoping of subroutine variables
– No nesting allowed (subroutines in subroutines)

Return to caller via RTNSUBR or ENDSUBR
Would not allow GOTO from outside of
subroutine to label within the subroutine
Using GOTO to leave SUBR gives warning

Pointer CL variables

Add TYPE(*PTR) on DCL statement
New %ADDRESS built-in to set pointer
New %OFFSET built-in to store pointer offset
Add *BASED attribute on DCL statement
Add *DEFINED attribute on DCL statement
Allow pointer to be used with %SUBSTRING
Makes many functions available to ILE CL
– Full record-level file I/O
– String functions

Faster CL program startup

Might support option to not initialize CL variables
that don't have initial VALUE
Investigating not initializing compiler temporary
variables (many done twice today)
Might allow variables to be in static storage
(currently all variables in automatic storage)
Could support static external CL variables for
ILE CL
– Would enable sharing across procedures and

languages (e.g. between CL and C)

Other possible improvements
Provide higher precision for *DEC variables
Provide 8-byte integers (ILE CL only)
DCLF support for large character fields & integer
fields
Arrays (may limit to single-dimension)
Structures (may limit substructure nesting)
Date, Time, Timestamp, Float data types
Enhanced generic name parameter values
– Generic suffix support
– Single-character wildcard support

Proxy command support

Continuing to deliver
improvements

Intention is to keep adding improvements
Rochester wants to deliver enhancements
that will delight iSeries customers,
including business partners
– If They're hitting the mark, tell an IBM exec
– If They’ve missed, tell Guy Vig

(gwvig@us.ibm.com)
Funding at risk if little or no positive
customer feedback

